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The problem of nonstat ionary heat conduction is t reated for  a hal f -space  containing an 
infinite number  of cylindrical  heat sources ,  and a boundary condition of the f i rs t  kind at 
the sur faces .  It is a s sumed  that the radii of the sources a re  small  in compar ison with 
the i r  spacing and the ordinate of the center .  

1. The problem under considerat ion is a mathemetical  model of nonstationary heat t r ans fe r  between 
a semibounded mass ive  body and a number of cooling o r  heating pipes embedded in it. Pract ica l  examples 
of this model a re  such widely used hea t - t r ans fe r  sys tems  as ground heating of greenhouses and open 
ground, cer ta in  radiant  heating sys tems ,  heating floors of buildings, etc.  

The co r re spond ings t eady- s t a t e  problem was par t ia l ly  solved in [1] (the formula for  the rate of flow 
of heat). The electr ical  simulation of the s teady-s ta te  t empera ture  distribution is descr ibed in [2], and 
an analytic express ion for  it was obtained subsequently in [3, 4]~ 

In the mathemat ical  formulation the nonstat ionary problem is reduced to the solution of the heat-  
conduction equation for  a uniform hal f -space  y - 0 (Fig. 1) containing an infinite number  of cylindrical 
heat sources  with p a r a m e t e r s  p, Y0, S for  the following boundary conditions: 

t (x , ,  y , ,  O) = to ( 1 . 1 )  
t (x., 0, ~) = to (1.2) 
t (x., o~, ~) = to (1.3) 
t (x , ,  U,,  ~) f.~,. v. ~ r = tT ( 1 . 4 )  

where  t is the t empera tu re  at  the point x*, y* at t ime ~, to is the initial t empera ture ,  and tT is the t e m -  
pera ture  at the surface F of the sources .  

The fami l ia r  relat ion [5] 

r_ p.~+r.~], ( p.r.' / 
t ( r , ,  "C) ~ ~ exp  

L 

descr ibes  the spatial t empera tu re  distribution produced by an instantaneous cylindrical  surface heat 
source  of s trength ~ ,  and radius p, .  Here a is the thermal  diffusivity of the body, and r .  is the radius 
vec tor  to a point. 

We assume that the source  s t rength var ies  with t ime. Then the integral  

T(r, .~)=._~_~ir 9,2-]-r,~1[ [ p , r ,  1 du  ~ /  o ~ )  ~ _ .  (1.5) 
0 

will be the t empera tu re  function of a continuously active cylindrical  heat source of variable strength.  

We consider  the following expression in dimensionless variables for  the results  of superposing an 
infinite number  of sources  and corresponding sinks of the type (1o5) 
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[ (  ) 1 ~ pZ @ r~l~ ! pr k .) 
0(x,y, Fo )=-~ -  ~ q~(u) exp -- 4(Fo--u) I0 ~ 2 ( F ~ u )  

p ~- R~, 2 ( ~)" -- --exp �9 4~F-o----~ Io Fo u 

~(x ,  y, v)--t0 av 
O - -  i T _ _ t  ~ , F o - -  S~  

r~ = [(k -- z) ~ + (y -- y0)2] V', / ~  = [(k - -  z)  2 + (u + yo)21 ~''" 

(1.6) 

(1.7) 

Here  p, Y0, x, y a r e  r e s p e c t i v e l y  the d i m e n s i o n l e s s  rad ius  of the 
s o u r c e s ,  the o rd ina te  of t he i r  c e n t e r s ,  and  the l i n e a r  coord ina tes  for  
a g iven  d i m e n s i o n  S. In (1.6) and  (1.7) the s u b s c r i p t  k = 0, f 1 . . . . .  +~o 

takes  on pos i t i ve  va lues  for  s o u r c e s  and s inks  in  the reg ion  x > 0, 
and  nega t ive  va lues  in the reg ion  x < 0. 

Equat ion  (1.6), as a l i n e a r  sum of i n t e g r a l s  of the h e a t - c o n d u c -  
t ion  equat ion ,  s a t i s f i e s  that  equat ion  and, tak ing  account  of the t r a n s -  
f o r m a t i o n  to d i m e n s i o n l e s s  v a r i a b l e s ,  ~ e b o u n d a r y  condi t ions  (1.1)- 
(1.3). The n e c e s s a r y  and  suf f ic ien t  condi t ion  for  the so lu t ion  to be 
unique  is that  bounda ry  condi t ion  (1.4) be sa t i s f i ed ,  and this  can be 
ach ieved  by an a p p r o p r i a t e  choice of the fo rm of the funct ion  (P(Fo). 
R e f e r r i n g  (1.6) to points  A(0, Y0- P) o r  B(0, Y0 + P) we find that  C(F0) 
is  d e t e r m i n e d  by the fol lowing V o l t e r r a  i n t e g r a l  equa t ion  of the f i r s t  

kind of the convolu t ion  type:  

1 
Fig .  2 l = TE 

FO 

k ~ - - c o  0 

P~ -~ Nk~ Io , 2 ( u 
4 (Fo -- u) u) Fo - -  

-- exp ( 

whe re  n k and N k a r e  r e s p e c t i v e l y  the r ad ius  ve c t o r s  to the 

t ions  

2y0 >~> 9, p ~ i 

(1.8) 

and  u s ing  (1.7) these  a r e  equal to 

poin ts  A and  B. Making the s imp l i fy ing  a s s u m p -  

(i.9) 

k = 0 (1.10) 

Using the convolution theorem and taking the Laplace transforms of (1.6) and (1.8) we obtain the two 
equations 

co 

~(~) lo (p VT) ~ IKo(r~ VT)--Ko(R~ V7)1 6 (~) = - - ~  
k ~ - - c o  

oo 

i ~-(s) U s )  ~ [Ko(n~]/ ' s ) - -Ko(Nk]/ -s )]  s 2~ I0 (p 

w h e r e  0(s) ancl q~(s) a r e  the t r a n s f o r m s  of the r e s p e c t i v e  f u n c t i o n s .  Solving these  we f ind 

= Y, f 'o m v ; ) -  Ko {, j (1.11) 

The  i n v e r s e  t r a n s f o r m  of (1.11) is found by us ing  the f o r m u l a  for  the Mel l in  i n v e r s i o n .  In this  case  
the f a i m i l a r  Hankel  con tou r  is u sed  with a b r a n c h  cut a long  the  nega t ive  rea l  axis  be tween  the b r a n c h  p o i n t s  
s = 0 and s = '~ of the i n t e g r a n d .  By app ly ing  s t a n d a r d  methods  of con tou r  i n t e g r a t i o n  and us ing  the p r o p e r -  

t i e s  of Besse l  funct ions  we ob ta in  

2 ~ Y (nkz , Nkz) Y (rfi, Rkz) -- J (r~z, R~z) Y (nh.z, Nkz) dz 
O(x 'y 'F~ d e-Z~F~ [Y (n~:z, Nkz)]~-~- [Y (nfi, Nkz)]2 ~ (1.12) 

o 

~r ( 1 . 1 3 )  
Y(b.z,B~z)= ~ [Jo(bkz)--Yo(B~z)] Y(b~z,B~z)= ~ [Yo(bfi)--Yo(B~z)] 

cc c~ 

0st = ~ In R~ N k 
k = - : r  n e (1.14) 
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Equation (1.14) descr ibes  the s teady-s ta te  tempera ture  distribution for the problem (3), and the ser ies  
appearing in its numera to r  and denominator  are  summed in [3, 1] respect iveIy.  This enables us to write 
(1.14) in the form 

i ch 2g (yo -~ y) -- cos 2gx ( 1  ) 
Ost = -'~-la c h 2 n ( y o _ ~ c o s 2 n x  In sh2z~y0 (1.15) 

2. Under assumptions (1.9) the t empera tu re  fields produced by sources  and sinks in the neighborhood 
of a par t icu lar  source  can be assumed constant.  Then the total field in the same neighborhood is cyl indr i -  
cal, and the rate of heat flow per  unit length of the source  (k = 0 for  definiteness) is 

ot oo 
Q = (-- 2gp~, "~ro )ro=p =--2n~,p (tT -- to)"~zo ]ro=p (2.1) 

In sat isfying (2.1) the operations of differentiation must  be kept in mind, and since the field is cylin- 
dr ical  

~ = o  ' 0r~ I {~ 'k:l>~' 
0ro r,=p ~ T~ l, k=0  (2.2) 

Differentiating Eq. (1.12) with its s tat ionary component in the form (1.14) and using (2.2) we find 
that the dimensionless rate of heat flow q = Q/[X(t T -  to)] is 

c r  [ (-~-p )]-l-~-4Pl exp zUFo) Jl(Pz) Y(nkz'Nkz)--Yl(Pz)J(nkz'Nkz) 
q = 2g In sh2~y0 (-- [J (nkz,[Nkz)]~ + [Y (nkz, Nkz)]Z dz (2.3) 

0 

The f i r s t  t e rm on the r ight-hand side of (2.3) is the dimensionless form of the fami l ia r  O. E. Vlasov 
formula .  

F igure  2 shows the dependence of the dimensionless t empera tures  (curves 1 and 2) and the rate of 
heat flow (curve 3) on the Four i e r  number,  calculated by Eqs~ (1.12) and (2.3) for  the following source  pa ra -  
me te r s :  p = 0.04 and Y0 = 0.2~ In this case curves 1 and 2 i l lustrate the t ime behavior  of the tempera ture  
at two points of the ha l f - space  having the dimensionless coordinates xi = 0o16, Yl = 0.2 and x2 = 0.5, Y2 = 0.4. 

3. We es t imate  the e r r o r  of the solution due to the approximate charac te r  of conditions (1.9) by using 
the famil iar  re la t ion between a function and its t r ans fo rm 

0 (x, y, 0)=lim s0(x, y,s) 
~ z o  

Then by using the asymptot ic  formula 

we find from (1.11) 
t, x, y ~ F 

O(x,y,O)= {0, x , y ~ F  

which represen ts  conditions (1.1) and (1.4) in dimensionless var iables .  

(3ol) 

Thus, Eqs.  (1.12) and its part ial  derivative (2.3) a re  exact solutions at zero t ime since for Fo = 0 the 
boundary conditions of the problem are  sat isf ied r igorously .  The deviation from condition (3ol) on the 
contour of the source  under considerat ion begins When the t empera tu re  functions of the remaining sources  
and sinks take on appreciably  different values in its vicinity. 

We note that since function (1.5) fo r  a source of sink increases  monotonically with t ime, its value for  
any fixed point is maximum for  F 0 = ~. Thus it follows that the e r r o r  in the solution is maximum in the 
steady state.  

A numerical  analysis  [6] shows that when the conditions 

p ~ 0t3, y0 / P >~ 4 (3.2) 

a re  sat isf ied simultaneously the relat ive e r r o r  of the O. E. Vlasov formula is less  than 4%. The e r r o r  of 
the s teady-s ta te  component of the relat ive t empera tu re  for  p -< 0.1 is negligibly small  [7]. Thus when the 
l imitations (3.2) are  sat isf ied,  which is general ly the case in pract ice ,  the maximum e r r o r  in solutions 
(1.12) and (2.3)isno more  than a few percent .  
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