NONSTATIONARY HEAT CONDUCTION IN A HALF-SPACE
WITH AN INFINITE NUMBER OF CYLINDRICAL
HEAT SOURCES

I, A, Ioffe UDC 536.2.01

The problem of nonstationary heat conduction is treated for a half-space containing an
infinite number of cylindrical heat sources, and a boundary condition of the first kind at
the surfaces. It is assumed that the radii of the sources are small in comparison with
their spacing and the ordinate of the center.

1, The problem under consideration is a mathemetical model of nonstationary heat transfer between
a semibounded massive body and a number of cooling or heating pipes embedded in it., Practical examples
of this model are such widely used heat-transfer systems as ground heating of greenhouses and open
ground, certain radiant heating systems, heating floors of buildings, etc.

The corresponding steady-state problem was partially solvedin [1] (the formula for the rate of flow
of heat). The electrical simulation of the steady-state temperature distribution is described in {2], and
an analytic expression for it was obtained subsequently in [3, 4].

In the mathematical formulation the nonstationary problem is reduced to the solution of the heat-
conduction equation for a uniform half-space y = 0 (Fig. 1) containing an infinite number of cylindrical
heat sources with parameters p, yg, S for the following boundary conditions:
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where t is the temperature at the point x*, y* at time 7, t¢ is the initial temperature, and tT is the tem-
perature at the surface I of the sources.

The familiar relation [5]
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describes the spatial temperature distribution produced by an instantaneous cylindrical surface heat
source of strength ¢x and radius px. Here a is the thermal diffusivity of the body, and rx is the radius
vector to a point,

We assume that thesource strength varies with time. Then the integral
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will be the temperature function of a continuously active cylindrical heat source of variable strength.

We consider the following expression in dimensionless variables for the results of superposing an
infinite number of sources and corresponding sinks of the type (1.5)
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Here p, v, X, v are respectively the dimensionless radius of the
sources, the ordinate of their centers, and the linear coordinates for
a given dimension S. In (1,6) and (1.7) the subscriptk =0,%1, ..., +=
takes on positive values for sources and sinks in the region x > 0,
and negative values in the region x <0,

1.0 £ Equation (1.6), as a linear sum of integrals of the heat-conduc-
¢ \ 7 tion equation, satisfies that equation and, taking account of the frans-
a4 N 5 J formation to dimensionless variables, the boundary conditions (1,1)-
a6 N p (1.3). The necessary and sufficient condition for the solution to be
L unique is that boundary condition (1.4) be satisfied, and this can be
a4 S /.5 achieved by an appropriate choice of the form of the function ¢{Fo).
p P~ . . - .
% P2 Referring (1.6) to points A(0, yo™ p) or B(0, yo + p) we find that ¢(F0)
0z / 7 V’ z is determined by the following Volterra integral equation of the first
el ’ kind of the convolution type:
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where nj and Ni are respectively the radius vectors to the points A and B, Making the simplifying assump~
tions
2y > p, pgt (1.9)

and using (1.7) these are equal to
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Using the convolution theorem and taking the Laplace transforms of (1.6) and (1.8) we obtain the two
equations
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where 9(s) and ¢(s) are the transforms of the respective functions. Solving these we find
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The inverse transform of (1.11) is found by using the formula for the Mellin inversion. In this case
the faimilar Hankel contour is used with a branch cut along the negative real axis between the branch points-
s = 0 and s = @ of the integrand. By applying standard methods of contour integration and using the proper-
ties of Bessel functions we obtain
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Equation (1,14) describes the steady-state temperature distribution for the problem (3), and the series
appearing in its numerator and denominator are summed in [3, 1] respectively. This enables us to write
(1,14) in the form
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2. Under assumptions (1.9) the temperature fields produced by sources and sinks in the neighborhood
of a particular source can be assumed constant, Then the total field in the same neighborhood is cylindri-
cal, and the rate of heat flow per unit length of the source (k = 0 for definiteness) is
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In satisfying (2.1) the operations of differentiation must be kept in mind, and since the field is cylin-
drical
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Differentiating Eq. (1.12) with its stationary component in the form (1.14) and using (2.2) we find
that the dimensionless rate of heat flow q = Q/[Aty—tg)] is
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The first term on the right-hand side of (2.3) is the dimensionless form of the familiar O. E, Viasov
formula.

2.3)

Figure 2 shows the dependence of the dimensionless temperatures (curves 1 and 2) and the rate of
heat flow (curve 3) on the Fourier number, calculated by Egs. (1,12) and (2.3) for the following source para-
meters: p = 0,04 and yy = 0.2. In this case curves 1 and 2 illustrate the time behavior of the temperature
at two points of the half-space having the dimensionless coordinates x4 = 0.16, y1 = 0.2 and xg = 0.5, y3 = 0.4.

3. We estimate the error of the solution due to the approximate character of conditions (1.9) by using
the familiar relationbetweenafunctionand its transform
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Then by using the asymptotic formula
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which represents conditions (1.1) and (1.4) in dimensionless variables,

Thus, Egs. (1.12) and its partial derivative (2.3) are exact solutions at zero time since for Fo = 0 the
boundary conditions of the problem are satisfied rigorously. The deviation from condition (3.1) on the
contour of the source under consideration begins when the temperature functions of the remaining sources
and sinks take on appreciably different values in its vicinity.

We note that since function (1.5) for a source of sink increases monotonically with time, its value for
any fixed point is maximum for Fj ==, Thus it follows that the errorinthe solution is maximum in the
steady state,

A numerical analysis [6] shows that when the conditions

p<043,  p/p>4 (3.2)
are satisfied simultaneously the relative error of the O, E, Vlasov formula is less than 4%. The error of
the steady-state component of the relative temperature for p = 0.1 is negligibly small {7]1. Thus when the

limitations (3.2) are satisfied, which is generally the case in practice, the maximum error in solutions
(1.12) and 2.3)is no more than a few percent.
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